brookes_logo_charcoal_small Save Save Save Save

Engaging User Experience with Wearable and Pervasive Computing

We push the envelope in Human Computer Interaction with wearables and other forms of pervasive computing. New modalities require new aesthetics and ergonomics. For example, hands-free navigation through the tangible reality using smart glasses needs new forms of interaction.

Artists in residency: Deval and Losseau

Fridolin Wild : 20th September 2017 2:25 pm : Augmented Reality, Wearable Computing
Via the Horizon 2020 funded Vertigo project, we will receive an artist in residence to work with our WEKIT project. Vertigo aims to catalyze new synergies between artists, cultural institutions, R&D projects in ICT, companies, incubators, and funds. We will host from December 2017 to October 2018 two artists, Yann Deval and Marie-Ghislaine Losseau, to work with us on exploring and investigating the new aesthetics and design plus interaction principles for ‘reality 2.0’, made possible through the advent of smart AR glasses. Yann and Marie-Ghislaine will use AR glasses as a medium of expression, creating a holographic exhibit ‘ATLAS’.
ATLAS is a work between digital arts and visual arts, in form of a interactive and sceno-graphic exhibition, mixing real and virtual worlds. Situated in an archipelago of poetical islands, the spectator will be invited to build a city. Using a ‘seed launcher’, the user will grow houses following urbanistic rules with smart homes adapting to the environment created: cities in the cloud, uprooted cities, cities on stilts, flying cities.
Yann Deval
Interactive designer, motion-designer, musical composer. After studying the history of cinema in La Sorbonne (Paris) and studying editing and audio-visual post-production in Cannes, he settled in Brussels in 2006 where he developed his activities as motion-designer and VFX artist. He works for the film industry (Mood Indigo by Michel Gondry, The Brand New Testament by Jaco Van Dormael), music-videos (Puggy, Sacha Toorop), documentaries for Arte, tv-shows for France Television). He occasionally trains professionals and students at digital creation workshops (School Arts2 Mons, EMMD Motion Design Brussels). Between 2012 and 2017, he co-directed the virtual reality performance IMMERSIO. This performance was a mix between live music and digital arts,  played in a rich set of venues (SAT Montreal, ADAF Athens, SignalOFF Prague, Wisp Festival Leipzig, Bozar and Halles de Schaerbeek Brussels).
Marie-Ghislaine Losseau
Scenographer, visual art designer. She studied scenography at La Cambre / Brussels and visual arts at ISPG Brussels. She develops an activity around the topics of scenography, visual installations and the organisation of workshops with kids and adults.
Leave a response »

Keynote on TEL for Industry 4.0

Fridolin Wild : 20th September 2017 10:18 am : Augmented Reality, Performance Analytics, Projects, Wearable Computing

The director of PAL, Dr Fridolin Wild, presented a keynote to the audience of the 12th European Conference on Technology Enhanced Learning (EC-TEL’17, Tallinn, Estonia).

Industry 4.0 is on the rise and this coordinated push for automation, big data, and internet-of-things in the smart factory is already causing (and will continue to) disruption in the job market. New skills for ‘new collar’ jobs are needed and intelligent assistance systems with Augmented Reality, Smart Glasses, and other forms of wearable computing may help to deliver them.

In this talk, Dr. Wild introduced to the concept of Performance Augmentation and illustrated how challenges for the future can be met at the hand of several examples of intelligent training and live guidance applications in aircraft maintenance, space assembly, and medical diagnostics.

Leave a response »

Real-Time Auditory Biofeedback System for Forearm and Hand Movements

Fridolin Wild : 27th July 2017 1:27 pm : Augmented Reality, Wearable Computing

In this master project, Sophie Kirkham is developing a proof of concept prototype for providing real-time auditory feedback to end-users on their arm movement during simple motor tasks, an application that could be used, for example, in rehabilitation of stroke patients who have to regain motor control of their limbs. This is how she explains the work:

Research using augmented reality and virtual reality as a source of visual feedback in rehabilitation and motor learning has been receiving positive outcomes across the computing and medical fields. AR and VR can provide a method of increasing motivation and stimulation whilst performing the repetitive tasks required for motor development. Little research, however, has been done so far on integrating auditory feedback within these systems despite it’s capabilities at representing spatio-temporal information and to motivate, encourage and reduce stress in people. In this project, I am designing, developing and evaluating a proof of concept real-time auditory biofeedback system that maps EMG and IMU data from arm movements during simple motor tasks to auditory parameters.” (Sophie Kirkham)

Leave a response »

Best Paper Award

Fridolin Wild : 21st July 2017 9:36 am : Augmented Reality, Wearable Computing

Dr Fridolin Wild won the best paper award for his first authored paper entitled “Technology Acceptance of Augmented Reality and Wearable Technologies” at the Immersive Learning Research Network annual conference that this year took place in Combra, Portugal, from June 26 to 29:

Wild F., Klemke R., Lefrere P., Fominykh M., Kuula T. (2017): Technology Acceptance of Augmented Reality and Wearable Technologies, In: Beck D. et al. (eds): Immersive Learning Research Network (iLRN 2017), Communications in Computer and Information Science, Vol 725. Springer, Cham

The paper develops a new method to measure technology acceptance for AR/wearable tech in a workplace context (see abstract below). This is what the paper covers:

“Augmented Reality and Wearables are the recent media and computing technologies, similar, but different from established technologies, even mobile computing and virtual reality. Numerous proposals for measuring technology acceptance exist, but have not been applied, nor fine-tuned to such new technology so far. Within this contribution, we enhance these existing instruments with the special needs required for measuring technology acceptance of Augmented Reality and Wearable Technologies and we validate the new instrument with participants from three pilot areas in industry, namely aviation, medicine, and space. Findings of such baseline indicate that respondents in these pilot areas generally enjoy and look forward to using these technologies, for being intuitive and easy to learn to use. The respondents currently do not receive much support, but like working with them without feeling addicted. The technologies are still seen as forerunner tools, with some fear of problems of integration with existing systems or vendor-lock. Privacy and security aspects surprisingly seem not to matter, possibly overshadowed by expected productivity increase, increase in precision, and better feedback on task completion. More participants have experience with AR than not, but only few on a regular basis.”

In the picture: co-author Mikhail Fomynikh receiving the award from conference chair Jonathan Richter.

Leave a response »

Transforming industrial learning

Fridolin Wild : 17th July 2017 3:25 pm : Augmented Reality, Wearable Computing

A trans-European team of researchers is transforming industrial learning and training with the use of innovative Augmented Reality and Wearable Technology (AR/WT).

Wearable Experience for Knowledge Intensive Training (WEKIT) is a 2.7 million EURO research and innovation project funded by Horizon 2020, to develop and test a novel way of training using smart wearable technology within three years.

Dr Fridolin Wild, Senior Research Fellow at Oxford Brookes University and Principal Investigator and Scientific Director of the WEKIT Project said: “In the modern world, there tends to be a concern that technology is developing so rapidly that it will replace humans in the workplace.”

“WEKIT demonstrates that cutting-edge technology can actually help humans become better at work, quicker, less error-prone, more engaged and healthier.”

Using AR, WEKIT effectively brings textbooks to life using digital visual and audial information that overlay on the physical environment, for example in the form of animations. The soft- and hardware system shows the trainee what to do through the eyes of the expert, allowing the trainee to learn by experience rather than simply reading about it or watching a video tutorial. It also allows an expert to create instructions easily – by capturing performance using WT.

Dr Wild continued: “Using augmented reality as a medium for learning and work is a powerful tool, particularly in high-skill settings which require the teaching or re-teaching, of complex manufacturing and engineering tasks after ‘Industry 4.0’.”

“Crucially, it also has the potential to have a positive impact on the time and costs of training large numbers of people.”

The new AR system, involving the Hololens and other wearable devices, was recently put into action for the first time when it was tested with 142 experts and trainees at three separate organisations; in Tromsø, halfway to the North Pole in the Arctic circle, and in Turin and Genoa, Italy.

Throughout the trials, specially developed applications for both the experts and novices were used and feedback was collected to assess the suitability and acceptance of the system in three distinct scenarios:

  • Medics and engineers at the Arctic town of Tromsø performed equipment checks on the aircraft used as emergency responders in the region. More than 50 students donned the Hololens and used the WEKIT training application to carry out the checks. The system walked them through the air ambulance with the aid of holograms and audio instructions and gave them real-time feedback on their progress.
  • At ALTEC (a service provider for the Italian Space Agency) WEKIT tested a procedure for setting up stowage racks for use by astronauts on the International Space Station. Trainees were tracked as they installed the equipment, monitoring their efficiency on every step as well as their heart-rate variability.
  • With the help of radiologists in Genoa and EBIT, a medical software company, a number of medical students were trained to assess the blood flow in the carotid artery on an unfamiliar ultrasound machine. This tricky procedure involves following instructions (laid out in 3D) whilst maintaining control of both an ultrasound probe and a patient (in our case: an actor). A holographic tutor delivers the recorded think-aloud explanation of the expert, while instructional holograms, floating videos and to-be snapshots guide step by step through the procedure. Tested by medical and engineering students, this trial provided in-depth feedback on the subtleties of using AR for complicated, interactive procedures.

The trainees and experts involved in the trial evaluated specific features of the prototype and the training approach, technology acceptance, system usability, user satisfaction of training with AR glasses and human-computer interface, and simulation sickness.

More information about WEKIT:


For more information, please contact: Natalie Gidley, Communications Officer (Media Relations) at Oxford Brookes University on 01865 484452 or

Notes to Editors

  • Images and video footage taken during the WEKIT trails are available. Please contact the Oxford Brookes University press office.
  • The scientific coordination of WEKIT is at Oxford Brookes University in the UK, the administrative coordination with the Italian IT company GFT. WEKIT brings together four further academic partners including Ravensbourne (UK), University of Tromsø (Norway), Open University (The Netherlands), and RWTH (Germany).
  • The research centres at Oxford Brookes University (UK), Open University of the Netherlands (NL), VTT (Finland), and the high-tech SME MyndPlay (UK) are leading the development of the key components of the platform.
  • Three industry partners – Norway-based Lufttransport as well as EBIT and ALTEC from Italy – are leading evaluation cases to test the WEKIT training methodology and technological platform in real practical settings.
  • Set in a historic student city, Oxford Brookes is one of the UK’s leading universities and enjoys an international reputation for teaching excellence and innovation as well as strong links with business and industry. More information is available on the Oxford Brookes website at
Leave a response »

Call for Chapters: Perspectives on Wearable Enhanced Learning

Fridolin Wild : 20th June 2017 10:49 am : Augmented Reality, Wearable Computing

Perspectives on Wearable Enhanced Learning: Current Trends, Research and Practice

An edited volume by Ilona Buchem, Ralf Klamma, Fridolin Wild
to be published by Springer, New York

Springer website:
Dedicated website:
EasyChair submission:


Wearable technologies – such as smart glasses, smart watches, smart objects, or smart garments – are potential game-changers, breaking ground, and offering new opportunities for learning. These devices are body-worn, equipped with sensors, and integrate ergonomically into everyday activities. With wearable technologies forging new human-computer relations, it is essential to look beyond the current perspective of how technologies may be used to enhance learning.


This edited volume “Perspectives on Wearable Enhanced Learning” aims to take a multidisciplinary view on wearable enhanced learning and provide a comprehensive overview of current trends, research, and practice in diverse learning contexts including school and work-based learning, higher education, professional development, vocational training, health and healthy aging programs, smart and open learning, and work. This volume will feature current state of the art in wearable enhanced learning and explore how wearable technologies begin to mark the transition from the desktop through the mobile to the age of wearable, ubiquitous technology-enhanced learning.


The edited volume is divided into seven parts:

Part I The Evolution and Ecology of Wearable Enhanced Learning

This part includes chapters describing an evolution of technology-enhanced learning from the desktop to wearable era, the different phases in the evolution of technologies for learning, introducing in the technological and conceptual shifts from e-learning through m-learning to ubiquitous learning. This part introduces the reader to the topic and provides both a historical perspective and a conceptual framework for a socio-cultural ecology of learning with wearables.

Part II The Topography of Wearable Enhanced Learning

This part includes chapters giving an overview of current trends and uses of wearable enhanced learning including examples of projects, use cases, case studies. This part provides an overview of real-life examples and aims at illustrating the breadth of uses of wearable technologies for learning in different application contexts such as education, work, health and open learning.

Part III Technological Frameworks, Development and Implementation

This part includes chapters providing insight into different technological aspects of wearable enhanced learning focusing both on the hardware and the software. This part also gives an overview of different development and implementation methodologies applied in wearable enhanced learning.

Part IV Pedagogical Frameworks and Didactic Considerations

This part includes chapters providing insight into different pedagogical frameworks and didactic/instructional design approaches applied in wearable enhanced learning. This part also discusses pedagogical affordances of wearables as technologies for learning and the consequences for a didactically sound design and integration of wearables in learning settings/environments.

Part V Design of User Experience

This part includes chapters providing insight into different aspects of user experience design including approaches for enhancing user engagement such as gamification and information visualisation as well as human-computer interaction and interface design. This part also discusses how current insights from research and development in wearable computing, which represents the forefront of HCI innovation, may be applied to designing user experience in learning settings.

Part VI Research and Data

This part includes chapters providing overview of current empirical research results in wearable enhanced learning touching upon the different dimensions of learning including cognitive, social and embodied dimensions. This part also discusses how data can be gathered and exploited in wearable enhanced learning which includes such topics as wearable learning analytics, turning data into information and data-driven approaches to enhancing learning in wearable enhanced learning.

Part VII Synopsis and Prognosis

The final part includes a chapter providing a synopsis and a prognosis for the future development in the field of wearable enhanced learning.

Call for Chapters

Prospective authors (co-authors are welcome) are invited to submit a chapter proposal (via EasyChair: in form of an abstract (max. 300 words) with the title, names of authors, five keywords and the part of the book for the contribution not later than 30 September 2017. The proposals for chapters should be a previously unpublished work.

Upon acceptance of the chapter proposal and notification of authors by 20 October 2017, the final chapter should be completed not later than 01 February 2018.

Contributions will be double blind reviewed and returned with comments by 31 March 2018. Finalised chapters are due no later than 30 April 2018. The final contributions should not exceed 20 manuscript pages. Guidelines for preparing your chapter will be sent to you upon acceptance of your proposal.

Proposed Timeline

The following represents a timeline for completing this volume:

  • 20 June 2017: Call for Chapters open
  • 30 September 2017: Abstracts due (title, authors, abstract, keywords & book part)
  • 20 October 2017: Notification and additional information for authors and templates
  • 01 February 2018: Chapters due (according to the template)
  • 31 March 2018: Chapters returned with reviewers’ comments
  • 30 April 2018: Final chapters due (ready for publication)
  • 31 May 2018: Book manuscript delivered to Springer

Inquires and Submissions

Please forward your inquiries to:

The Editors: Ilona Buchem, Ralf Klamma and Fridolin Wild



Twitter: @mediendidaktik @klamma @fwild

Please submit your proposal to:


Leave a response »

BMW Global Knowledge Day

Fridolin Wild : 2nd March 2017 11:15 am : Augmented Reality, Wearable Computing

Dr Fridolin Wild of the Performance Augmentation Lab gave an invited lecture on how to use Augmented Reality for training in production to engineers at BMW’s Global Knowledge Day on Thursday, February 23. The event was live streamed from Oxford to Munich and the other German plants, the British plants in Goodwood and Hams Hall, the plant in Spartenburg, USA, and the plant in Rosslyn, South Africa. This is part of an ongoing collaboration, exploring the potential for human performance augmentation methodologies and technologies in manufacturing, quality assurance, and logistics at BMW. The lecture covered an introduction to foundational concepts and theories around perception, experience, and augmented reality, an overview on base technologies, and examples from augmenting human work performance through expert capturing and live/recorded guidance.

Leave a response »

Putting Magic into the Workplace

Fridolin Wild : 8th February 2017 2:51 pm : Augmented Reality, Wearable Computing

Much of the magic from our childhood novels has become technically feasible, but we can also use these same super powers to put a bit of magic into industrial workplaces, enhancing human performance through live guidance. Dr. Wild’s talk picks three magic examples (shape shifting, levitation, apparition) and shows how the technology and working principles can be applied for good in manufacturing work places.

Leave a response »

CfP: 12th European Conference on Technology-Enhanced Learning

Fridolin Wild : 26th January 2017 1:31 pm : Augmented Reality, Performance Analytics, Wearable Computing

The 12th European Conference on Technology-Enhanced Learning
12-15 September 2017, Tallinn University, Tallinn, Estonia

The European Conference on Technology-Enhanced Learning (EC-TEL) engages researchers, practitioners, educational developers, entrepreneurs and policy makers to address current challenges and advances in the field. This year’s theme of ‘Data Driven Approaches in Digital Education’ focuses on the new possibilities and challenges brought by the digital transformation of the education systems. The increasing amount of data that can be collected from learning environments but also various wearable devices and new hardware sensors provides plenty of opportunities to rethink educational practices and provide new innovative approaches to learning and teaching. This kind of data can provide new insights about learning, inform individual and group-based learning processes and contribute to a new kind of data-driven education for the 21st century.

The conference will explore how data can be used to change and enhance learning in different ways and to collect evidence for technological innovations in learning: for instance multimodal data, personal data stores, data visualisations for learner and teacher awareness, feedback processes, predictions of learning progress, personalisation and adaptation, as well as data-driven learning designs, or ethics and privacy policies for the data-driven future.

Papers should consider data at different scales (individual, group, class, massive) and different dimensions (cognitive, emotional, behavioral) of learner engagement with the technology. We are looking forward to receiving papers that address the conference themes and are informed by theories of pedagogy and evidence of effective practice. Qualitative papers offering robust meta-analyses or having visionary new educational designs are also welcome.

The venue for this year’s conference is Estonia’s capital Tallinn, the best preserved medieval city in Northern Europe directly at the Baltic Sea..

Full Papers, Short Papers, Posters & Demonstrations:

  •  3 April 2017- Mandatory submission of an abstract
  • 10 April 2017 – Submission of full version
  • 29 May 2017 – Notification of acceptance
  • 26 June 2017 – Camera-ready versions

Workshop Proposals

  • 10 April 2017 – Submission of workshop proposal (Abstract not needed)
  • 5 May 2017 – Workshops notification
  • 12 and 13 September 2017- Workshops

Project Meetings

  • 20 June 2017 – Room reservation for project meetings
  • 11, 12 and 13 September 2017- Project Meetings


  • 24 July 2017 – Early-bird registration ends
  • 14 and 15 September 2017- Main conference, Tallinn University, Estonia

Doctoral Consortium

  • 22 May 2016 – Doctoral Consortium application submission
  • 19 June 2016 – Doctoral Consortium application notification
  • 31 July 2016 – Doctoral Consortium reviews
  • 28 August 2016 – Doctoral Consortium camera-ready versions
  • 13 September 2016 – Doctoral Consortium

Submission Formats

Submissions will be handled through EasyChair ( All papers will be reviewed through a single blind review process. Accepted papers will be published in the conference proceedings. As every year, we will publish proceedings within Springer “Lecture Notes in Computer Science” (LNCS) Series”. The use of supplied template is mandatory:

  • Full Papers: max. 14 pages, published in proceedings
  • Short Papers: max. 6 pages, published in proceeding
  • Demonstration Papers: max. 4 pages (published in proceedings) plus max. 2 additionals pages describing the demo (not published in proceedings)
  • Poster Papers: max. 4 pages (published in proceedings)
  • Workshop proposals: use the provided form, (not published in proceedings)

Conference Organization

General Chair:
Katrien Verbert, KU Leuven, Belgium

Programme Chairs:
Élise Lavoué, Jean Moulin Lyon 3 University, France
Hendrik Drachsler, Open University & ZUYD University of Applied Sciences, Netherlands

Workshop Chairs:
Olga C. Santos, UNED, Spain
Luis P. Prieto, Tallinn University, Estonia

Poster and Demonstration Chairs:
Mar Pérez-Sanagustín, PUC Chile
Julien Broisin, University of Toulouse, France

Dissemination Chair:
Sharon Hsiao, Arizona State University, USA

Doctoral Consortium Chairs:
Katherine Maillet, Institut Mines-Télécom, Télécom Ecole de Management, France
Lone Dirckinck-Holmfeld, Aalborg University, Denmark
Ellen Rusman, Open University of the Netherlands, Netherlands

Local Organization Chairs:
Tobias Ley, Tallinn University, Estonia
Kairit Tammets, Tallinn University, Estonia

Steering Committee Representative:
Ralf Klamma, RWTH Aachen University, Germany

Industry Chair:
Kadri-Liis Kusmin, Proekspert and Tallinn University, Estonia

Leave a response »

CfP: Special Track on Wearable-technology Enhanced Learning (WELL)

Fridolin Wild : 9th January 2017 2:36 pm : Wearable Computing
at the Immersive Learning Research Network Conference iLRN 2017
June 26-29, 2017, Coimbra, Portugal

Topic of the Special Track
Wearable technologies – such as smart watches, smart glasses, smart objects, smart earbuds, or smart garments – are just starting to transform immersive user experience into formal education and learning at the workplace. These devices are body-worn, equipped with sensors and conveniently integrate into leisure and work-related activities including physical movements of their users.
Wearable-technology Enhanced Learning (WELL) is beginning to emerge as a new discipline in technology enhanced learning in combination with other relevant trends like the transformation of classrooms, new mobility concepts, and cyber-physical systems. Wearable devices play an integral role in the digital transformation of industrial and logistics processes in the Industry 4.0 and thus demand new learning and training concepts like experience capturing, re-enactment and smart human-computer interaction.
This proposal of a special track is the offspring of the SIG WELL ( in the context of the European Association for Technology Enhanced Learning (EATEL). It is a follow up proposal for the inaugural session we had at the iLrn 2015 in Prague. In the meantime, the SIG was successful in organizing a number of similar events at major research conferences and business oriented fairs like the EC-TEL, the I-KNOW and the Online Educa Berlin OEB. Moreover, the SIG has involved in securing substantial research funds through the H2020 project WEKIT ( The SIG would like to use the opportunity to present itself as a platform for scientific and industrial knowledge exchange. EATEL and major EU research projects and networks in the field support it. Moreover, we’ll seek to attach an IEEE standard association community meeting of the working group on Augmented Reality Learning Experience Models (IEEE ARLEM).

List of Topics
Industry 4.0 and wearable enhanced learning
Learning Analytics for Wearable technologies
Wearable technologies for health and fitness
Wearable technologies and affective computing
TEL applications of smart glasses, watches, armbands
Learning context and activity recognition for wearable enhanced learning
Body-area learning networks with wearable technologies
Data collection from wearables
Feedback from wearables
Learning designs with wearable technologies
Augmented Reality Learning
Ad hoc learning with wearables
Micro learning with wearables
Security and privacy for wearable technology enhanced learning
Collaborative wearable technology enhanced learning

Paper submission: February 1, 2017
Notification of authors: March 15, 2017
Full paper submission: April 15, 2017
Date of the conference: June 26-29, 2017

Contributing papers have to undergo a peer review process and will be included
in the conference proceedings, depending on the overall quality and special tracks chairs’ decision, either as a long paper (10 – 12 pages) or as a short paper (6 -8 pages). Excellent papers will be deemed full papers (14 pages) and included in the Springer proceedings.  Authors of selected papers will also be invited to extend their contribution and to be published in a special issue of the JCR-indexed Journal of Universal Computer Science.

Track chairs
Ilona Buchem, Beuth University of Applied Sciences Berlin, Germany
Ralf Klamma, RWTH Aachen University, Germany,
István Koren, RWTH Aachen University, Germany
Fridolin Wild, Oxford Brookes University, UK
Alla Vovk, Oxford Brookes University, UK

Tentative Program Committee (t.b.c.)
Mario Aehnelt, Fraunhofer IGD Rostock, Germany
Davinia Hernández-Leo, Universitat Pompeu Fabra, Spain
Carlos Delgado Kloos, UC3M, Spain
Elisabetta Parodi, Lattanzio Learning Spa, Italy
Carlo Vizzi, Altec, Italy
Mar Perez Sangustin, Pontificia Universidad Católica de Chile, Chile
Isa Jahnke, University of Missouri-Columbia, USA
Mikhail Fominykh, Europlan, UK
Puneet Sharma, University of Tromso, Norway
Yishay Mor, Levinsky College of Education, Israel
Tobias Ley, Tallinn University, Estonia
Peter Scott, Sydney University of Technology, Australia
Victor Alvarez, Murdoch University, Australia
Agnes Kukulska-Hulme, The Open University, UK
Carl Smith, Ravensbourne University, UK
Victoria Pammer-Schindler, Graz University of Technology &Know-Center Graz, Austria
Christoph Igel, CeLTech, Germany
Peter Mörtel, Virtual Vehicle, Austria
Brenda Bannan, George Mason University, USA
Christine Perey, Perey Consulting, Switzerland
Kaj Helin, VTT, Finland
Jana Pejoska, Aalto, Finland
Jaakko Karjalainen, VTT, Finland
Joris Klerxx, KU Leuven, Belgium
Katrien Verbert, KU Leuven, Belgium
Marcus Specht, Open University, Netherlands
Roland Klemke, Open University, Netherlands
Will Guest, Oxford Brookes University, UK

Leave a response »
« Page 1, 2, 3 »

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.